Self-supervising Fine-grained Region Similarities for
Large-scale Image Localization

Yixiao Gel, Haibo Wang?, Feng Zhu?, Rui Zhao?, Hongsheng Li*

1The Chinese University of Hong Kong,
2SenseTime Research,

3 China University of Mining and Technology




Image Localization via Image Retrieval
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Challenge #1: Noisy Positives by Weak GPS Labels

Geographically
close-by images may
not depict the same
scene when facing
different directions.




Previous Solution: Train with Only the Easiest Positive

Query image

Potential positives
filtered by GPS labels

Forcing the queries to be closer to their
already nearest neighbors results in a lack
of robustness to varying conditions.

‘ Difficult positives are needed!
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Motivation: Use Noisy Difficult Positives Properly
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False difficult positive
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Our Solution: Image Similarities as Soft Supervisions

Similarity label = 0.6
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Small similarity label
for false difficult positive
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Similarity label = 0.1

e e O small similarity label for true difficult
positive with small overlapping regions
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Similarity label =1.0 * Similarity label = 0.3




Our Solution: Similarity Labels
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‘Q The first generation’s query-gallery similarities serve as the soft
supervision for training the network in the second generation.



Our Solution: Similarity Labels
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Our Solution: Similarity Labels
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Soft-label loss:  Lsoft (02) ="ece (Sp, (a0, P15+, Pr; 1),/S0, (¢, p1, -+ PR3 T1))

similarity labels (learning targets)

cross-entropy loss . . .
Py estimated by the network in generation #1



Our Solution: Self-enhanced Similarity Labels

First generation Second generation Third generation Fourth generation
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‘@ The generated soft supervisions are gradually refined as
the network generation progresses.



Challenge #2: Lack of Region-level Supervisions

Only image-level labels

Ideal image-to-region labels

Query image Positive sample
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\Q’ The correct image-level labels might not

necessarily be the correct region-level labels.




Our Solution: Image-to-region Similarities as Soft Supervisions
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y Provide fine-grained image-to-region similarities to
enhance the learning of local features.



Our Solution: Image-to-region Similarities as Soft Supervisions
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Image similarities between query and regions of positive #1

Fine-grained Similarity labels:
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Comparison with State-of-the-art (#1)

Query’s heatmap Retrieved top-1 image
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Query image SARE
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\Q Our method pays more attention on the discriminative shop signs than SARE.



Comparison with State-of-the-art (#2)

Query’s heatmap Retrieved top-1 image

Query image SARE
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\
N SARE incorrectly focuses on the trees,
while our method learns to ignore such misleading regions.
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Code available at
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https://github.com/yxgeee/SFRS
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