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FD-GAN: Pose-guided Feature Distilling GAN for Robust Person Re-identification
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Motivation Feature Distilling Generative Adversarial Network

B Posture variations, blur and occlusion pose great challenges for learning discriminative person Input Image 1

____________ E Input Image
features. e e | image Encoder Conv-BN-ReLU block
- : : : - : : Elma%e Visual Identity loss | 2 [ ] Conv-BN-Dropout-ReL U block Visual Features 1
B Existing works which attempted to address the above issues require auxiliary pose information neoder \Fea’”’es | & oo
/ — : Target Pose Fake [mage Person?
and more computational cost in the inference stage. _‘ : @Square BN H Fc 2951 o
' Pose loss | p y
e Target Pose - _ | |
T T T T T m e m e e e e e ' Train o R/ T : Olmfe Pose Encoder Generator &
11 Inference Person : al | | \ : | e; or Visual Features 2
I | @ :
f——————— '\I . Features i | noise z i [ Verification loss ] | (a) Image Encoder, Pose Encoder, Generator (b) Verification Classifier
(I l I
: Person Images Encoder Verification | | | 1 _ ' Input Image
- J : | | Fake/Real Image Image-pose
- — - :'————————————————————————————————————————I : ﬁ Pose loss E X [ J ng:;i? y Matching Map
: : ! Square Sigmoid
[ - | . i ' — | Fake/Real | @ : BN FC [ 0/1 @ [ ] 0/1
Pose & Noise Generator Discriminators | T | Fake/Real Image
: ' I w 2 Image Visual :
T e / e | '.g.:' ¥ | Encoder Features s Identity loss ! y [ J P Target Pose
= = (__ ___________ : (c) Identity Discriminator (d) Pose Discriminator
Contributions
The proposed FD-GAN adopts a Siamese structure, taking a person image and a target pose landmark map as inputs for each branch. The assumption is that, if the learned
B Representation learning. The proposed FD-GAN learns identity-related and pose-unrelated person features are pose-unrelated and identity-related, then it can be used to accurately generate the same person’s image but with different target poses.
representations for person re-identification with pose-variation, not requiring extra auxiliary B Image encoder transforms the input person image into feature representations.

pose information or increase the computational complexity during inference. , _ . , , ,
B Image generator generates desired person images conditioned on the identity-related features from the image encoder and a target pose map.

B Person image generation. Although it is an auxiliary task for our framework, the generated

person images by our proposed method show better quality than existing specific person-
generation methods. B |dentity discriminator is trained to distinguish whether the generated person image and the input person image of the same branch belong to the same person.

B Identity verification classifier determines whether the two images belong to the same person, given the visual features of the two input images from the image encoder.

B Pose discriminator is proposed to distinguish whether the generated person image matches the given target pose.
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Baseline 72.5 88.2 61.3 78.2 88.5 90.1
(Siamese)
Our 77.7 90.5 64.5 80.0 91.3 92.6
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