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Existing Domain Adaptive Methods on Object Re-ID

Two-stage training scheme:
1. Supervised pre-training on the source domain with ground-truth labels;
2. Unsupervised fine-tuning on the target domain with pseudo labels, which

can be generated by clustering instance features.
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Limitations:

e The accurate source-domain ground-truth labels are valuable but were

ignored during target-domain training.

e Discard difficult but valuable clustering outlier samples from being used for

training. Note that there are generally many outliers especially in early

epochs.

Motivations & Contributions

Motivations:
e Encode all available information from both source and target domains;
e Treat all source-domain classes, target-domain clusters and un-clustered

outlier instances as equal classes for training.
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Contributions:

e Propose a unified contrastive learning framework with hybrid memory for
joint feature learning with class-level, cluster-level and un-clustered instance-
level supervisions;

e Design a self-paced learning strategy with a clustering reliability criterion to
gradually provide more confident learning targets for training;

e Significantly outperform state-of-the-arts with up to 5.0% mAP gains on

domain adaptive object re-ID tasks, and up to 16.7% mAP gains on

unsupervised object re-ID tasks. Our method can even boost the source-

domain performance with up to 6.6% mAP gains by incorporating unlabeled

target-domain data for joint training.
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Self-paced Contrastive Learning (SpCL) Framework

Hybrid Memory
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Unified contrastive Loss:

positive prototype
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Positive prototypes:
e For source-domain images: class centroids
e For target-domain clustered images: cluster centroids

e For target-domain un-clustered images: instance features

Hybrid memory (momentum update):

e All the source-domain images are cached in the form of ground-truth classes:

’wk<—m3’wk—|—(1—ms)o— Z fis

e All the target-domain images are cached in the form of instances:
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Then the cluster centroids can be calculated on-the-fly:

1
Ck:m Z’Ui

v, €Ly

And the un-clustered instance features are directly loaded from the memory.
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Self-paced Learning Strategy

Initialize the training process with the most reliable clusters and gradually

incorporate more un-clustered instances to form new reliable clusters.

Cluster reliability criterion:

independent cluster non-independent cluster incompact cluster
=« N
compact clu
— current clusters = ——looser clusters ——currentclusters  ———tighter clusters
Z(££) 0 Tiooe( ! Z(f£) N Zugn (ff
Rindep(.ff): I ( z) oose( 7,)| c [0,1] Rcomp(.ff)_ | ( 7,) 18 ( z)l c [0,1]

IZ(£7) Y Zioose (£7)] - Z(F) U Zign (FF)]

Only reliable clusters are preserved and other confusing clusters are

disassembled back to un-clustered instances.

Experimental Results

Domain adaptive object re-ID benchmarks, e.g.
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Performance of domain adaptive models on the source domain
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Unsupervised object re-ID benchmarks, e.g.
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