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Object Re-identification (Re-ID)

Identify the probe object
from multiple cameras

Probe object,
e.g. a vehicle

Q Learn discriminative features in varying conditions.

Example images from VehicleX synthetic dataset, introduced in the 4th Al City Challenge.
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Object Re-identification (Re-ID) -- Domain Gaps

Probe object,
e.g. a vehicle

Domain A

Identify the probe object
from multiple cameras
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Misidentify the probe object due
to non-discriminative features

Domain B

Common scenarios:
e CityA—CityB
e Synthetic — Real-world

Example images from VehicleX synthetic dataset for domain A and VeRi-776 real-world dataset for domain B.




Open-class Domain Adaptive Vehicle Re-ID

Labeled source domain

Transfer

Knowledge

Unlabeled target domain

Example images from VehicleX synthetic dataset for the source domain and VeRi-776 real-world dataset for the target domain.

o]

48

¥
)
f



Open-class Domain Adaptive Person Re-ID
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Labeled source domain Unlabeled target domain

Transfer

Knowledge

Example images from PersonX synthetic dataset for the source domain and Market-1501 real-world dataset for the target domain.



Previous UDA Methods on Object Re-1D

(1) Pre-training stage:

source-domain data encoder I<— class IDs

(2) Fine-tuning stage: load weights

target-domain data
& I<— cluster IDs



Previous UDA Methods on Object Re-1D

(1) Pre-training stage:

source-domain data

(2) Fine-tuning stage:

target-domain data

source-domain data
(only for pre-training)

encoder I<— class IDs

load weights

encoder I<— cluster IDs

Limitation #1: .

The accurate source-domain ground-truth
labels are valuable but were ignored during
target-domain training.




Previous UDA Methods on Object Re-1D

(1) Pre-training stage:

source-domain data encoder I<— class IDs

|

|
(2) Fine-tuning stage:  load weights
|
I

Partial target-domain data

encoder | B<— cluster IDs
(only clustered data are used) I

source-domain data
(only for pre-training)

red points are outliers
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Limitation #2:

Discard difficult but valuable clustering

outlier samples from being used for training.
Note that there are generally many outliers

especially in early epochs.




Solution

N

Encode all available information,

i.e. source data, clustered target data, un-clustered target data

All source-domain data

All target-domain data

encoder

Hybrid Memory

class IDs, cluster IDs &
un-clustered instance IDs




SpCL Framework e

Hybrid Memory

encoder

== source-domain class centroids {w} mm target-domain all instance features {v1," -, Vpnt }
T target-domain cluster centroids {c} 1 target-domain un-clustered instance features {vi,- -, v }



Prototypes

Hybrid Memory

source-domain
class centroids

target-domain
cluster centroids °

target-domain
un-clustered instance features



Contrast

Hybrid Memory

—
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Unified Contrastive Loss

Hybrid Memory

Wk

encoder

N

Lf=—log—F——

[ T T

class centroids cluster centroids instance features




Update Memory -- Source-domain Class Centroids

Hybrid Memory

source-domain

i in centro'ld
dynamically updating class centroids

encoder /
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Update Memory -- Target-domain Instance Features

Hybrid Memory

encoder —
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Target-domain Cluster Centroids & Un-clustered Instances

% Cluser centroid

Hybrid Memory
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Cluster Reliability Criterion

Cluster independence* _ Cluster campactness

independent cluster non-independent cluster incompact cluster
“\ A .

compact cluster
—— current clusters == —looser clusters ——currentclusters  —— = tighter clusters
IZ(£7) N Tioose (£7)] _Z(F) N Zigne(F7))

Ringep (F1) = € [0,1] Reomp (£7) € 0,1

|I(fzt) Ul—loose(-ﬁ)l N |I(fzt) UItight(ff”

Rindep > @ and Reomp > B, while the remaining data are treated as

Q We preserve independent clusters with compact data points whose
un-clustered outlier instances.

* “Independence” is used in its idiomatic sense rather than the statistical sense.



Domain Adaptive Object Re-ID Performance

(a) Real — real adaptation
on person re-ID tasks

(b) Synthetic — real adaptation

on person re-ID tasks
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Domain Adaptive Object Re-ID Performance

(c) Real — real adaptation on vehicle re-ID tasks (d) Synthetic — real adaptation on vehicle re-ID tasks
VehiclelD --> VeRi-776 VehicleX --> VeRi-776
40 40
30 T 3.6% 30 T 3.3%

20 20

MAP(%)
mAP(%)

10 10

0 0
MMT-dbscan (ICLR'20) Ours MMT-dbscan (ICLR'20) Ours

Q An inspiring discovery: synthetic — real task could achieve competitive performance (38.9%) as the
real — real task with the same target-domain dataset (VeRi-776), which indicates that we are one
more step closer towards no longer needing any manually annotated real-world images in the future.



Performance on the Source Domain

MSMT17 —-> Market-1501 Market-1501 --> MSMT17
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MAP(%)

DG-Net OSNet

Source only MMT-dbscan Ours Source only MMT-dbscan
(ICLR'20) 1 (CVPR19)  (ICCV'19) | (ICLR'20)

State-of-the-art
supervised methods

Ours

DG-Net OSNet
' (CVPR19)  (IcCV'19) |

State-of-the-art

supervised methods

Q Our method could even boost the source-domain performance, while previous UDA methods (e.g.
MMT) inevitably forget the source-domain knowledge. Our method also outperforms state-of-the-art
supervised re-ID methods (e.g. DG-Net, OSNet), indicates that our method could be applied to
improve the supervised training by incorporating unlabeled data without extra human labor.




Unsupervised Vehicle Re-ID

NO source domain

Example images from VeRi-776 dataset for the target domain.

Unlabeled target domain
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Unsupervised Person Re-ID

NO source domain

Example images from Market-1501 dataset for the target domain.

Unlabeled target domain




Generalized Version of SpCL for Unsupervised Object Re-ID S

All target-domain data

encoder

Hybrid Memory

\cluster IDs &

un-clustered instance IDs

mm target-domain all instance features {’U1 sttty Upt }

1 target-domain un-clustered instance features {’01 )t

1 target-domain cluster centroids {C}

encoder
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L; = —log

exp((f,27)/7)

S exp((free) /7)+ 300, exp((fvr)/7)

Hybrid Memory
s 0 |
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Unsupervised Object Re-ID Performance

Market-1501 MSMT17 VeRi-776
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Q MoCo is inapplicable on unsupervised re-ID tasks, because it treats each instance as a single
class, while the core of re-ID tasks is to encode and model intra-/inter-class variations.
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Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID

Yixiao Ge, Feng Zhu, Dapeng Chen, Rui Zhao, Hongsheng Li

Multimedia Laboratory, The Chinese University of Hong Kong

Code available at
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https://github.com/yxgeee/SpCL



https://github.com/yxgeee/SpCL

